MAGMETIC ANOMALIES IN THE RARE EARTH OXIDE SUPERCOMPUCTORS GDBAZCU30(7-X) (U) MORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF CHEMISTRY WE HATFIELD ET AL. 89 JAN 88 TR-3 N08014-76-C-08016 F/G 20/3 AD-A190 713 1/1 UNCLASSIFIED NL. TO SECURE AND ASSESSED TO SECURE AND ASSESSED FOR ASSESSE MICROCOPY RESOLUTION TEST CHART NATIONAL BURLAU IN STANDARDS 1963 A | | 1 | |---|-------| | | 10 | | • | (- / | | | | | AD-A190 /13 | PORT DOCUM | MENTATION I | PAGE | | 1 | | | |---|---|--|--|-------------------|--------------|--|--| | -
Unclassified | 16 RESTRICTIVE MARICINGS | | | | | | | | 28 SECURITY CLASSIFICATION AUTHORITY | 3 DISTRIBUTION/AVAILABILITY OF REPORT | | | | | | | | 2b. DECLASSIFICATION / DOWNGRADING SCHEDU | - | Approved for Public Release | | | | | | | 20. DECENSIFICATION / DOWNGROUNG SCHEDU | Distribution Unlimited | | | | | | | | 4. PERFORMING ORGANIZATION REPORT NUMBE | 5. MONITORING ORGANIZATION REPORT NUMBER(S) | | | | | | | | 64 NAME OF PERFORMING ORGANIZATION | 78 NAME OF MONITORING ORGANIZATION | | | | | | | | Department of Chemistry
University of North Carol | Office of Naval Research | | | | | | | | 6c. ADDRESS (City, State, and ZIP Code) | Office of Naval Research | | | | | | | | and the code, | 76 ADDRESS (City, State, and ZIP Code) | | | | | | | | Chapel Hill, North Caroli | Department of the Navy
Arlington, VA 22217 | | | | | | | | BAL NAME OF FUNDING / SPONSORING ORGANIZATION | 86 OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT DENTIFICATION NUMBER | | | | | | | ONGARIZATION | (if applicable) | N00014-76-C-0816 | | | | | | | 3c. ADDRESS (City, State, and ZIP Code) | | 10 SOURCE OF F | UNDING NUMBER | · S | | | | | | | PROGRAM | PROJECT | CASK | WORK UNIT | | | | | | ELEMENT NO | NO. | NR 053-61 | ACCESSION NO | | | | 1. Title (include Security Classification) UNC | LASSIFIED: Mac | netic Anor | malies in | | | | | | Oxide Superconductors GdB | ^a 2 ^{Cu} 3 ^O 7-x and | YbBa ₂ Cu ₃ O. | 7-x · | | | | | | Helms, Hyekyeong Ro, and I | Hatfield, Bria
Eric J. Willia | an R. Rohrs
amson | s, Martin | L. Kirk, | Jeffrey H. | | | | Technical Report FROM | OVERED TO | 14 JATE OF REPO
January 9 | | Day) 15 PAGE
1 | | | | | 6 SUPPLEMENTARY NOTATION | | bandary 5 | , 1700 | | | | | | Technical Report No. 30 | | | | | | | | | 7 COSATI CODES | 18 SUBJECT TERMS (C | ontinue on reverse | e if necessary and | d identify by blo | ck number) | | | | F ELD GROUP SUB-GROUP | ceramic oxide | Continue on reverse if necessary and identify by block number) ivity; yttrium; barium; copper; e perovskite; gadlinium, Meissner effec | | | | | | | | spin*glass < | | eco; gaarr | , , , , , | 0001 | | | | '9 ABSTRACT (Continue on reverse if necessary The magnetic properties | s of GdBa ₂ Cu ₃ (| $\gamma_{7-\mathrm{x}}$ and YE | Ba ₂ Cu ₃ O _{7-X} | have bee | n studied | | | | in low applied magnetic field by using pelletted sample. The magnetic behavior may be explained by the occurance of a spin-glass state due to a granular | | | | | | | | | | assumes super | | | | | | | | pared to the penetration de | epth, and thes | se are cour | oled into | closed lo | ops. Cool- | | | | ing in zero-field, followed by the application of a field at a fixed | | | | | | | | | temperature produces a meta
behavior, , | astable state | resulting | in frustr | ation and | spin-glass | | | | DTIC | | | | | | | | | ELECTE A | | | | | | | | | | | | | JAN 2 | 0 1988 | | | | 29 DISTRIBUTION/AVAILABILITY OF ABSTRACT | 21 ABSTRACT SE | CURITY CLASSIFIC | ATION L | 1 | | | | | UNCLASSIFIED/UNLIMITED I SAME AS A | PT DTC SERS | | | Mar office o | \$ VA49O1 | | | | William E. Hatfield | 226 TELEPHONE | (include Area Code
2297 | P) ZZC OFFICE S | T MIBUL | | | | | DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. All other editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFICATION OF THIS PAGE | | | | | | | | 12 170 88 1 OFFICE OF NAVAL RESEARCH Contract N00014-86-K-0608 R&T Code 413a001-000-01 TECHNICAL REPORT NO. 30 Magnetic Anomalies in the Rare Earth Oxide Superconductors GdBa₂Cu₃O_{7-x} and YbBa₂Cu₃O_{7-x} bу William E. Hatfield, Brian R. Rohrs, Martin L. Kirk, Jeffrey H. Helms, Hyekyeong Ro, and Eric J. Williamson Department of Chemistry The University of North Carolina Chapel Hill, North Carolina 27599 Prepared for publication in High Temperature Superconducting Materials; Preparations, Properties and Processing William E. Hatfield and John H. Miller, Jr., Editors New York: Marcel Dekker, Inc., 1988 Reproduction in whole or in part is permitted for any purpose of the United States Government *This document has been approved for public release and sale, its distribution is unlimited. *This statement should also appear in Item 3 of Document Control Date - DD Form 1473. Copies of the form are available from cognizant contract administrator. Magnetic Anomalies in the Rare Earth Oxide Superconductors GdBa₂Cu₃O_{7-x} and YbBa₂Cu₃O_{7-x} William E. Hatfield, Brian R. Rohrs, Martin L. Kirk, Jeffrey H. Helms, Hyekyeong Ro, and Eric J. Williamsen The University of North Carolina at Chapel Hill Chapel Hill, North Carolina The discovery of high T_C superconductivity in YBa₂Cu₃O_{7-x}1,² and this group's interest in the magnetic properties of rare earth compounds led to the study of paramagnetic analogs. Anomalous magnetic behavior in selected samples of two of these systems, GdBa₂Cu₃O_{7-x} and YbBa₂Cu₃O_{7-x} is reported here. A spin - glass like transition is present at temperatures below T_C. The glassy behavior in an annealed pellet of GdBa₂Cu₃O_{7-x} is shown in Figure 1. The flat regions in the diamagnetic shielding curve show flux trapping upon reversing the temperature and cooling in a field, proof that the sample is still a superconductor. The anomalous behavior observed in the diamagnetic shielding shows a time decay over a period of two weeks (Fig. 2) resulting in an increasingly broadened transition. After three weeks, the same sample displays typical superconductor behavior, however, a small residual componant of the previous phase results in a slight decrease in the magnitude of the diamagnetic signal at 50 K. It is believed this transient glassy behavior is due to the sample being subjected to numerous thermal and magnetic cycles. The fact that subsequent samples lost this behavior after one series of such cycles confirms the metastability of this glassy state. The Meissner signal for the sample showing the anomalous behavior and for the same sample after three weeks are essentially identical and show ~25% bulk diamagnetism. This is typical of a porous, granular superconducting composite. ^{3,4} The magnetic susceptibility of a powdered sample of GdBa₂Cu₃O_{7-x} (Fig. 3) is qualitatively Figure 1. Volume susceptibility of GdBa₂Cu₃O_{7-X} showing glassy behavior. Diamagnetic shielding (zero field cooled) signal of original sample \square , arrow demonstrates flux trapping upon cooling at 52°K. Meissner (field cooled) signal of original sample \triangle . Diamagnetic shielding signal of same sample after three weeks \lozenge showing ~85% total flux exclusion. Meissner signal after three weeks +. All susceptibilities are corrected for porosity and demagnetization effects. similar to Figure 1, except that no increase in the susceptibility below T_C is seen. The fact that the diamagnetic shielding is less than the previous amount of 75% for the pellet may be due to the smaller particle size of the powder. The YbBa₂Cu₃O_{7-X} sample (Fig. 4) is very similar to GdBa₂Cu₃O_{7-X} since it also shows the glass - like behavior. The Meissner signal is ~10% of the value for total flux exclusion. The magnetization of the YbBa₂Cu₃O_{7-X} specimen (Fig. 5) is typical of a "dirty" superconductor. As the field increases, the magnetization is linear beyond H_{C1} and curves slowly due to the inability of flux to freely penetrate. Upon reversing the field, some of the flux is trapped at defect sites giving rise to the large hysteresis shown. Several techniques have been used to determine sample purity. X-ray powder diffraction data give no evidence for a separate impurity phase. ICP-AES analysis yields an elemental stoichiometry of Gd₁Ba_{1.922}Cu_{2.752}O_y. Both of these techniques are accurate to within 5%. EPR spectroscopy (Fig. 6) at very high gain also yields none of the paramagnetic copper impurities witnessed by others.⁵ However, a broad Gd signal is observed at high gain indicating the possibility of a minor impurity phase (less than 0.5%). Perhaps the most convincing evidence lies in the susceptibility measurements. The Meissner signals show none or very small amounts of the large glass-like signal. Furthermore, paramagnetic impurities that give signals of this magnitude do not suddenly Figure 2. Diamagnetic shielding signal of GdBa₂Cu₃O_{7-x} demonstrating signal decay over time: original sample \square , one day later \triangle , after two weeks \lozenge . Figure 3. Volume susceptibility of a powdered sample of GdBa₂Cu₃O_{7-X} showing typical superconductor behavior. The Meissner effect Δ is ~25% and the diamagnetic shielding \square is ~70% of perfect diamagnetism. dissipate. It can be conclusively stated that the signal is caused by some other phenomenon. COURT INTERIOR DESCRIPTION One explanation for this behavior is the occurance of a spin-glass state due to a granular superconductor. 6.7 The basic model involves superconducting grains, each small compared to the penetration depth, which are weakly coupled into closed loops. At finite fields, these clusters are frustrated, i.e., they cannot find a state which minimizes all bond energies simultaneously. Consequently, there are numerous competing ground states with nearly equal energy. Cooling in zero-field, followed by the application of a field at a fixed temperature, produces a metastable state resulting in frustration and spin- Figure 4. Volume susceptibility of YbBa₂Cu₃O_{7-X}. Diamagnetic shielding signal \Box . Meissner signal Δ . glass like behavior. If the sample is cooled slowly in a fixed field, the clusters are in equilibrium and a typical Meissner signal results. This explanation, however, does not account for the large positive increase in the susceptibility. It accounts only for a decrease in the diamagnetism. Since X-ray powder diffraction and ICP-AES provide evidence that the impurities are less than 5%, small Gd impurities may form mictomagnetic clusters resulting in spin-glass formation. 8,9 The ZFC curve is a result of these clusters being frozen at some temperature T<T_C in a frustrated manner. Upon warming, the rigid glass softens and the magnetic clusters relax. Thermal disorder then causes a time averaged magnetization which manifests itself in a decrease Figure 5. Magnetization of YbBa $_2$ Cu $_3$ O $_{7-x}$ showing hysteresis due to flux trapping. Increasing field $\ \square$, decreasing field $\ \Delta$. Figure 6. (Next page) Room temperature X-band EPR signal of $GdBa_2Cu_3O_{7-x}$ showing no copper impurities and a small Gd^2+ signal. The small absorption at g=2.00 is from a DPPH standard. The Gd^2+ signal is not due to Gd_2O_3 which has g=1.86 and HWHH =330G. in the susceptibility. In the FC curve, the temperature is gradually decreased and the cluster spins have time to minimize their energy, resulting in no net contribution to the magnetization by the impurity ions. Thermal and magnetic cycling may tend to break up these domain-like clusters. This may explain the transient nature of the observed glassy behavior. SCOOLS RECEIVED SIBOCCOOL DOCCOOLS ## **ACKNOWLEDGEMENT** This work was supported in part by the Office of Naval Research. ## REFERENCES - SECONCIA SISSISSIA SECONDO CONTRA CONTINUE DISPISSIONI CONTINUE - 1. C.W. Chu, preprint - 2. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, *Phys. Rev. Lett.*, *16*, 908 (1987). - 3. Y. Yeshurun, I. Felner, and H. Sompolinsky, Phys. Rev. B, 36, 840 (1987). - 4. J.M. Tarascon, W.R. McKinnon, L.H. Greene, G.W. Hull, and E.M. Vogel, *Phys. Rev. B*, *36*, 226 (1987). - R. Jones, M.F. Ashby, A.M. Campbell, P.P. Edwards, M.R. Harrison, A.D. Hibbs, D.A. Jefferson, A.I. Kirkland, T. Thanyasiri, and E. Sinn, "Synthesis, Chemistry, Electronic Properties ans Magnetism in the Y-Ba-Cu-O Superconductor Systems", In "Chemistry of High-Temperature Superconductors", D.L. Nelson, M.S. Whittingham, and T.F. George, Eds., ACS Symposium Series 351, p. A1, 1987. - 6. C. Ebner, and D. Stroud, *Phys. Rev. B*, 31, 165 (1985). - 7. S.John, and T.C. Lubensky, *Phys. Rev. Lett.*, 55, 1014 (1985). - 8. P.J. Ford, Contemp. Phys., 23, 141 (1982). - 9. D. Davidov, K. Baberschke, J.A. Mydosh, and G.J. Nieuwenhuys, J. Phys. F, 7, L49 (1977). ## ABSTRACTS DISTRIBUTION LIST, 053 Dr. M. F. Hawthorne Department of Chemistry University of California Los Angeles, California 90024 Professor O. T. Beachley Department of Chemistry State University of New York Buffalo, New York 14214 Dr. W. Hatfield Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514 Professor R. Wells Department of Chemistry Duke University Durham, North Carolina 27706 Professor K. Neidenzu Department of Chemistry University of Kentucky Lexington, Kentucky 40506 Dr. J. Zuckerman Department of Chemistry University of Oklahoma Norman, Oklahoma 73019 Professor R. Neilson Department of Chemistry Texas Christian University Fort Worth, Texas 76129 Professor M. Newcomb Department of Chemistry Texas A&M University College Station, Texas 77843 Professor L. Miller Department of Chemistry University of Minnesota Minneapolis, Minnesota 55455 Professor K. O. Christe Rockwell International Canoga Park, California 91304 ## TECHNICAL REPORT DISTRIBUTION LIST, GEN | | No.
Copies | | No.
Copies | |--|---------------|--|---------------| | Office of Naval Research
Attn: Code 413
800 N. Quincy Street
Arlington, Virginia 22217 | 2 | Dr. David Young
Code 334
NORDA
NSTL, Mississippi 39529 | 1 | | Dr. Bernard Douda
Naval Weapons Support Center
Code 5042
Crane, Indiana 47522 | 1 | Naval Weapons Center
Attn: Dr. A. B. Amster
Chemistry Division
China Lake, California 93555 | 1 | | Commander, Naval Air Systems
Command
Attn: Code 310C (H. Rosenwasser)
Washington, D.C. 20360 | 1 | Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380 | 1 | | Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko
Port Hueneme, California 93401 | 1 | U.S. Army Research Office
Attn: CRD-AA-IP
P.O. Box 12211
Research Triangle Park, NC 2770 | 1 | | Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314 | 12 | Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 1911 | .2 | | DTNSRDC
Attn: Or. G. Bosmajian
Applied Chemistry Division
Annapolis, Maryland 21401 | 1 | Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 91232 | 1 | | Dr. William Tolles
Superintendent
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375 | 1 . | -3 <u>2-</u> | | EN/ DATE FILMED 4-88 21/